Seasonal to Decadal Predictions

Gabriel Vecchi — NOAA/GFDL

Introduction to basis, tools, limitations and ways of improving
predictions
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Why make predictions?

- Pragmatic reasons: skillful predictions help support

decisions by provi

« Scientific reasons:
element of scient
hypotheses under

ding glimpses of the future.

prediction Is a fundamental

fic method, providing tests to

ying them.




Sources of & Limitations on Climate Predictability

/_ }

Evolution of initial state of ocean/atmosphere.
Need good models and observations of
present and past

hours to
a month

—

Months to decades

Climate response to forcing
(e.g., CO,, soot/dust, sun, volcanoes, land use)
need good models and estimates of forcing

Predictability has inherent limits: need to be probabllistic.
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Many decades
to centuries




“lements of Climate Prediction System of Systems

Global climate observing system:
Sparse observations of many
quantities across globe.

Dynamical modeling system:
Allows forward integration from
present state, including expected
changes In radiative forcing.

Image sources: NOAA/PMEL and
Argo.ucsd.edu

Data assimilation system:

Combines sparse observations with
model, to estimate present state.
Usually based on dynamical model.

Analysis and dissemination system:

_ Take output from predictions and

& 7 produce “useful” information,

¥ = communicate predictions. @




Global dynamical model:

Mathematical representation of processes controlling ocean,
atmosphere, land and ice system (and their interactions)

In each gnid cell:

Resolved processes: Parameterized processes:

. conserve momentum - spatial/temporal resolution
(F=m a) or understanding limit

. onserve mass & energy explicit solution.

(radiation, latent, etc...) . e.g, clouds, convection, etc.

. account for changes in - key to much of uncertainty
composlition

|

“Initialize™ to observationally-constrained estimate of present state.
“Force” with solar radiation, structure of continents, land use and
atmospheric composition (CO,, O, aerosols, volcanoes, etc.)




High-resolution GFDL climate model (CM2.5)

broduces one of best global surface climate
simulations of present model generation
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CM2.5 described in Delworth et al. (2012) and companion papers
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Sources of Forecast Uncertainty

@predictabilm&pends on phenomenon and timescale

generally leads to random errors; even “best possible’ prediction
system not perfect, with possibility of large fallures at some point.

< Potentially predictable v@

- Observations (& Assimilation System)
- sparse data coverage, Inhomogeneity
- Forcings:
- future CO,, dust, sun, volcanoes unknown to some degree

- Systematic errors, inability to represent processes & phenomena

» Errors in analysis and communication




Dealing with Forecast Uncertainty
« Learn to live with irreducible uncertainties.

Naojse or Bl S ariations:

via "single-model ensembles’, parallel experiments
with slight per'turba’uons to inrtial state.
Some may be predictable: start model close to present state of world

» Systematic model errors (“biases’):

» Improve model.

- Enhanced comprehensiveness

« Increased resolution

- Better parameterizations (things not explicitly represented)

- Adjust for biases during and/or after forecast

R Eon of ctowds — some errors are differemit i@k

different model@odel en@




Simulated Atlantic Sea Surface Temperature shows impact of climate variability
(based on GFDL CM2.1)

I

1.2 | Radiative forcing leads to
|, 'warming, but interspersed
1 Individual ensemble members & b)/ varla"c‘lons i allW)’ O,r?e
of the “equally likely
. 0.8 ensembles.
5
] .
o Can we predict the
= e trajectory of Atlantic
}_
temperatures over the
0.4 next several decades!?
0.2 Ensemble mean  How about hurricane

activity?
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Predicted NINO3.4 SSTA showing inter-model (“epistemic™)
and inter-ensemble (“aleatory”’)

NMMME Forecast for Ninoa 2.4 |C= 201505%
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Tropical Pacific and a number of other regions highly
predictable (sometimes) on year-to-year timescales

NMME Forecast of SST Skill (AC) 1C=05 for JJA
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Aspects of Internal Variability Can be Source of Predictability:
Initialization Enables Prediction of 1994-5 Shift in Sub-Polar Gyre

Most Predictable Sea Surface Temperature Pattern 2-9 years in advance
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“Perfect” ensemble reforecasts indicate inherent
multi-year unpredictability

This is what perfect probabilistic forecasts look like!
(perfect model, near-perfect initial conditions, 40 members)

(a) Quiet epoch (30yr)
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Model resolution

- Increasing model resolution can, in principle, iImprove
BifEGEHGRS DY:

- allowing parameterized some processes become resolved
- represent features (e.g., topography) better

i el/ehe v/ prienomena (€.8., eddies, stofms)

» Increasing model resolution can complicate by:
- Increasing run cost (2x spatial resolution -> ~8x cost)
- Increasing data volume
- analysis more difficult
- Initialization not always scale independent
SREIEEIEr cicates — possibly false — Impressionter BEREls




Increasing model resolution can lead to different answers:
e.g., Atlantic response to 2xCO, (Saba et al. submitted)
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GFDL FLOR: Experimental high-resolution coupled seasonal to
decadal prediction system

Goal: Build a seasonal to decadal forecasting system to:
Yield improved forecasts of large-scale climate
Enable forecasts of regional climate and extremes

. Precipitation in Northeast USA High resolution
Medium (CM2.5-FLOR)

resolution
(G

Delworth et al. (201 2), Vecchi et al. (2014)

MEaliiccaersion of CM25 (Delworth et al. 2012);

* 50km cubed-sphere atmosphere
* |° ocean/sea ice (low res enables prediction work)
~ | 5-18 years per day. Multi-century integrations. 4,/00+ model-years of

experimental seasonal predictions completed and being analyzed.




FLOR forecast data freely available from GFDL and NMME — model public

4700+ years of forecast data freely available
(33 years, |2 start months, |2 ensembles) CM2.5 and FLOR models public
http://nomads.gfdl.noaa.gov/dods-data/NMME/  http://www.gfdl.noaa.gov/cm2-5-and-flor

Index of /dods-data/NMME

Laboratory

Name Last modified Size Description
GLOBAL CLIMATE MODELS, CM2.5 and FLOR

CM2.5

The CM2.5 model (Delworth et al., 2012) is a descendant of the GFDL CM2.1 model (Delworth et al., 2006) that @9

& Parent Directory -
incorporates higher spatial resolution and a significantly improved land model (LM3). As a result of these
@ FLORBO 1 Amon ChCCksum.I'CDOI't 29-J u1-20 l 4 1 1 :56 5 .4M enha:cements,g the Cf’IZ.S model has a signifi(g:antly im;rov:d simulation of many aspects of climate, €M2.5 Model Code

particularly hydroclimate over continental regions (Delworth et al., 2012, Figures 5,6,7 and 9) and aspects of
@ FLORBO l OImon ChOCkSllm rcpon 03‘Aug‘20 1 4 1 8_58 2 lM ocean circulation. This improvement has allowed GFDL scientists and their collaborators to use this model for
- . . innovative studies of regional hydroclimate change (Doi et al, 2012,2013; Kapnick and Delworth, 2013;
Delworth and Zeng, 2014; Kapnick et al., 2014) and ocean circulation (Lee et al, 2013). The model has also

@ F[‘ORBOI Omon chccksum_mpon 08_Aug_20 1 4 l 1 : 17 6 .SM proven very effective at simulating climate extremes, such as tropical cyclones (Kim et al., 2014) and drought CM2.5 Contact: Tom Delworth [

(Delworth et al., 2015). A similar horizontal spatial resolution is being targeted for GFDL’s next-generation

FLOR Model Code

FMS

model, CM4. FLOR Contact: Gabe Vecchil

@ FLORBOI da ChCCksum'rc It 29-JUI-20 1 4 1 l :48 4'3M Since the high-resolution ocean model is relatively expensive to run, a companion model (see description on

this web site for CM2.5_FLOR) was developed using the same atmospheric component as CM2.5, but with a lower resolution (and therefore much faster)

a GFDL_FLORBO 1/ 25-Ju1_20 l 4 22:47 - ocean model. This has proven very effective for seasonal to interannual prediction, especially given the need for very large sets of simulations to assess

the skill of 2 prediction system.

Model details

The atmospheric component of CM2.5 has similar physics as CM2.1, but uses grid box cells that are 50 Km on a side, versus approximately 200 Km in
CM2.1. The atmospheric component also increases the number of vertical levels from 24 to 32. The ocean component has horizontal resolution of




FLOR Improves on CM2.1 for SST Predictions

NINO3.4 (5°S-5°N, 170°W-120°W) SST Forecasts 1-Jan. Init.
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FEifospeciive predictions of ASO SST slightly improve in FLOR ovEr CHEZs

(@) CM2.1 Initialized 1-July (b) FLOR Initialized 1-July
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Mult-model ensembles

“Wisdom of the crowds”

- Many model errors differ across models

- Hypothesis: Looking across multiple models will:
INEIE @ iinore rellable prediction

2. More accurately represent true prediction uncertainty




North American Multi-model Ensemble for Seasonal Prediction (NMME)

- NOAA-led, interagency (& international — US.A. & Canada) effort

- Every month predictions from multiple models combined.

- Data & analysis publicly avallable:
http://www.cpc.ncep.noaa.gov/products/NMME/

National Weather Serviéj ‘

Climate Prediction Ce‘

w
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OME > NMME Forecasts of Monthly Climate Anomalies

-~ The North American Multi-Model Ensemble
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Welcome to the North American Multi-Model Ensemble home!

3-month mean spatial anomalies
1-month mean spatial anomalies

Nifio3.4 Plumes
International MME
Experimental: Probability forecasts
Preview: additional variables
Real-time verification (preliminary)

NMME Realtime Forecasts Archive
*¥* Data Access ¥***

About the NMME



NMME tends to outperform individual models (OND SST forecast from |-May)

NMME
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Summary

Both changes in external conditions (e.g., CO,, dust, volcanoes) and internal
variations (e.g., El Nifio, Overturning circulation) are basis for prediction.

There are inherent limits to predictability:
need to think probabllistically in forecast production, use and evaluation
depend on scales and phenomena.

Enhanced computing enables the development of high-resolution dynamical models.

Multi-model technigues tend to yield more reliable predictions

Errors In large-scale simulation a key source of biases in simulation/prediction of
regional climate and extremes

Partnerships and co-development can facilitate development of new prediction
applications — and reduce risk of misuse of predictions




